资讯中心

您的位置:首页 > 资讯中心
污水处理中溶解氧怎么控制?

污水处理中溶解氧怎么控制?

好氧处理系统的工艺原理是利用好氧微生物的代谢将废水中的有机污染物转化为无害的二氧化碳和水以及自身生存的能量,氧是其维持微生物正常的生命活动所必须的。那么溶解氧越高,好氧系统处理效果就会越好吗?在解答这个问题前,先理解好氧系统中食微比的概念。以常用的活性污泥系统为例,每天供给曝气池的BOD的总量与曝气池中活性污泥的总量之比即为食微比(其中供给的BOD可以看作是提供给微生物的食物)食微比计算公式如下:F/M=Q*BOD5/(MLVSS*Va)F:Food代表食物,进入系统的食物量(BOD)M:Microorganism代表活性物质量(污泥量)Q:水量,BOD5:进水BOD5的值MLVSS:活性污泥浓度Va:曝气池容积通常食微比的合适范围为0.1-0.25kgBOD5/kgMLSS.d之间,食微比过高说明微生物食物过剩,曝气池处于高负荷运行状态,食微比过低则曝气池处于低负荷运行状态。1食微比过高与过低出现的结果1、当曝气池处于合适的食微比范围运行时,活性污泥絮体结构良好,沉降性能优良,出水清澈透明;2、当曝气池处于高食微比运行状态时,甚至超负荷运行时,由于食物过剩,活性污泥沉降性能变差,出水浑浊,废水中的BOD难以被完全降解;3、当曝气池处于低食微比运行状态时,由于食物不足,活性污泥容易出现老化现象。长期低食微比运行,可能导致污泥发生解絮,甚至诱发活性污泥丝状菌膨胀。当活性污泥出现老化现象并引发污泥发生解絮时,活性污泥絮体结构会变得较为松散,出水中会携带很多细小的污泥碎片,导致出水的清澈度下降,水质恶化。2溶解氧对于处理效果的影响1、当曝气池处于高食微比运行状态时,维持相对较高的溶解氧是有利的,可加快废水中有机物的降解速率。2、当曝气池处于低食微比运行状态时,如果仍然维持较高的溶解氧,由于食物不足,会促使活性污泥内源代谢的加快发生,终导致活性污泥解絮现象的发生,即通常所说的过曝气现象。高溶解氧会加快微生物的代谢作用,可以举个形象一些的例子,就好比一个人,在吃不饱饭的情况下,你还让他拼命干活,只能加速让他的形体消瘦,直至消亡。3溶解氧的控制依据及优化主要依据:原水水质(有机物、氮、磷)、活性污泥的浓度、污泥沉降比、pH、温度、食微比(F/M)等进行控制。当然,书面上给的理论值:一般好氧条件下溶解氧浓度为≥2.0mg/L,厌氧条件下溶解氧浓度为≤0.2mg/L,缺氧条件下溶解氧浓度为0.2-0.5mg/L。具体还是要根据实际情况来把握。1、原水水质一般原水中有机物含量越多,微生物分解代谢的耗氧量越多,以及硝化反应等对溶解氧的需求,所以控制溶解氧时要注意进水水量的变化和进水中有机物的含量。2、活性污泥浓度在达到去除污染物、并到达排放浓度的情况下要尽量地降低活性污泥的浓度,这对于降低曝气量、减少电力消耗非常有利。同时,在低活性污泥浓度情况下,更要注意不要过度曝气,否则会出现污泥膨胀,使得出水混浊;当然,高的活性污泥浓度需要较高的溶解氧,否则会出现缺氧现象,使得污水处理效果受到抑制。3、污泥沉降比过度的曝气会使细小的起泡附着在活性污泥的菌胶团上,导致活性污泥上浮到液面,使得污泥沉降性能变差。在实际操作中应该注意这个问题,特别是发生污泥丝状膨胀的时候,更容易导致曝气的细小气泡附着在菌胶团上,继而导致液面出现大量浮渣。4、pH通过对活性污泥浓度及微生物等的影响,间接地影响到溶解氧量。所以在污水处理控制时,除了要充分了解调节池功能外,还要与排放单位建立联系,了解污水水质情况,以便投加合适的试剂中和异常的pH。5、温度不同温度下,污水中的溶解氧浓度不同,会对活性污泥浓度及微生物等产生影响。低温、高温都会影响水中溶解氧和微生物活性,使得污水处理效率低下。对于北方的低温,通常是建立地下或半地下室或室内处理;对于高温天气,则是通过调节池来调节池内温度进而提高处理效率。6、食微比(F/M)食微比越高或者越低,需氧量相对就越高,由此可以知道我们在水处理过程中通过食微比值来达到节能的目的,即在保证处理效果的前提下,尽量提高食微比,以避免不必要的曝气消耗。所以,在好氧系统的运行中,溶解氧浓度的控制应与食微比的控制密切相关,高食微比可控制较高的溶解氧浓度,促使有机污染物的有效降解。而相反,当食微比不足时,则应控制相对较低的溶解氧浓度,降低内源代谢的速率,以避免污泥老化及污泥解絮现象的发生,同时也可以降低电耗和节约运行成本。在实际中我们可以通过控制风机的频率、运行时间或者调节放空阀的大小来控制好氧池的溶解氧。

2025-01-09

more

【真相】水中溶解氧越高,处理效果越好吗?

【真相】水中溶解氧越高,处理效果越好吗?

摘要:好氧系统是污水处理常见的一个工艺单元,我们通过向好氧池供气,利用好养微生物分解有机污染物,于是有些人就认为“水中的溶解氧越高,好氧的处理效果就越好”,事实真的是这样吗?众所周知,好氧处理系统主要工艺原理是利用好氧微生物的代谢,将废水中的有机污染物转化为无害的二氧化碳和水,氧是其维持微生物正常的生命活动所必须的。但是溶解氧越高,好氧系统处理效果就会越好吗?在解答这个问题前,先理解好氧系统中食微比的概念。以常用的活性污泥系统为例,每天供给曝气池的BOD的总量与曝气池中活性污泥的总量之比即为食微比(其中供给的BOD可以看作是提供给微生物的食物)食微比计算公式如下:F/M=Q*BOD5/(MLVSS*Va)F:Food代表食物,进入系统的食物量(BOD)M:Microorganism代表活性物质量(污泥量)Q:水量,BOD5:进水BOD5的值MLVSS:活性污泥浓度Va:曝气池容积通常食微比的合适范围为0.1-0.25kgBOD5/kgMLSS.d之间,食微比过高说明微生物食物过剩,曝气池处于高负荷运行状态,食微比过低则曝气池处于低负荷运行状态。食微比过高与过低会出现什么结果呢?➀当曝气池处于合适的食微比范围运行时,活性污泥絮体结构良好,沉降性能优良,出水清澈透明;水处理工程师、废气治理工程师、环境保护工程师、消防工程师、在线环境监测工程师、在线环境运维工程师等高级研修班详询18911120767➁当曝气池处于高食微比运行状态时,甚至超负荷运行时,由于食物过剩,活性污泥沉降性能变差,出水浑浊,废水中的BOD难以被完全降解;➂当曝气池处于低食微比运行状态时,由于食物不足,活性污泥容易出现老化现象。长期低食微比运行,可能导致污泥发生解絮,甚至诱发活性污泥丝状菌膨胀。当活性污泥出现老化现象并引发污泥发生解絮时,活性污泥絮体结构会变得较为松散,出水中会携带很多细小的污泥碎片,导致出水的清澈度下降,水质恶化。了解完食微比以后,我们来看溶解氧对于处理效果的影响。高溶解氧会加快微生物的代谢作用。当曝气池处于高食微比运行状态时,维持相对较高的溶解氧是有利的,可加快废水中有机物的降解速率。当曝气池处于低食微比运行状态时,如果仍然维持较高的溶解氧,由于食物不足,会促使活性污泥內源代谢的加快发生,终导致活性污泥解絮现象的发生,即通常所说的过曝气现象。所以,在好氧系统的运行中,溶解氧浓度的控制应与食微比的控制密切相关,高食微比可控制较高的溶解氧浓度,促使有机污染物的有效降解。而相反,当食微比不足时,则应控制相对较低的溶解氧浓度,降低內源代谢的速率,以避免污泥老化及污泥解絮现象的发生,同时也可以降低电耗和节约运行成本。

2024-12-26

more

碳源如何计算,看完这篇你就懂了!

碳源如何计算,看完这篇你就懂了!

在现代废水处理工艺中,碳源的投加是一项至关重要的操作步骤。其目的在于通过提供必要的有机碳源,促进微生物的生长和代谢活动,从而实现对废水中氮、磷等营养物质的有效去除。因此,准确计算碳源的投加量不仅关乎处理效率的提升,也直接影响着运行成本和环境效益。01碳源投加量的基本计算原理碳源投加量的计算主要基于BOD5/COD比值、反硝化速率以及所需去除的总氮量等因素。基本计算公式可以表示为:碳源投加量(以COD计)=(反硝化需要的理论COD-废水原水中的可生化降解COD)×转化系数。转化系数通常根据实际工程经验或实验室模拟试验确定。02影响碳源投加量的因素在污水处理过程中,投加碳源作为微生物生长和反硝化过程的必要条件,需要综合考虑多方面因素,具体包括但不限于以下几点:水质监测指标:C/N比(碳氮比):污水中的COD(化学需氧量)与总氮(TN)或凯氏氮(TKN)之间的比例。为了确保反硝化过程充分进行,通常要求C/N比维持在一个适宜的范围,比如4:1至6:1之间,视具体情况可能有所不同。氨氮含量:当废水中氨氮超标时,需要补充碳源以平衡反应体系,提高反硝化的完整性。生物处理阶段需求:活性污泥培养驯化阶段:在这个阶段,微生物需要足够的碳源以促进其快速繁殖和适应环境,如果原水中的碳源不足,就需要额外投加。反硝化工艺:根据脱氮工艺设计,选择合适的碳源种类和投加点位,保证碳源能在反硝化池内得到有效利用,避免流失或过早消耗。废水可生化性:有机物类型和降解难易程度•:不同类型的有机碳源对微生物的生物利用率差别较大,应选用易于降解的小分子碳源,并考虑其是否能满足特定条件下微生物的代谢需求。经济性和安全性:碳源成本:选择的碳源应具有较高的经济效益,即能实现较好处理效果的同时,尽量减少运行成本。储存和使用安全:投加的碳源如甲醇、乙酸等应具有良好的储存稳定性和使用安全性,防止泄漏造成环境污染或安全隐患。工艺控制灵活性:投加点位和方式:根据工艺流程特点确定较好的投加点位,例如在缺氧区还是厌氧区,以及采取连续投加还是间歇式投加的方式。环境影响和法规约束:二次污染风险:确保投加碳源后不会引发新的污染物排放问题,符合环保法规要求。结合以上所有因素,才能制定出科学合理的碳源投加策略,有效地改善污水中碳源不平衡的情况并优化整个污水处理系统的性能。03碳源投加量的计算方法碳源投加量的计算在废水处理中是一个关键步骤,用于补充微生物生长所需的有机碳,促进生物降解过程。这里提供两种不同的计算方法:基于氮去除需求的简易计算法:当以污水中的总凯氏氮(TKN)为参考时,可以使用以下公式来计算必须投加的外部碳源量(以化学需氧量COD计):Cm=20N-C其中,Cm表示需要投加的外部碳源量(mg/l或kg/d,取决于V的单位);20是CN比,即理论上每克氮所需消耗的碳的质量比;N是需要去除的总凯氏氮(TotalKjeldahlNitrogen,TKN)的量(mg/l或kg/d);C是进出水的碳源差值,即污水处理系统中原有可利用的COD与实际所需COD之间的差距(mg/l或kg/d)。基于COD差值及COD贡献率的计算法:根据COD差值和COD贡献率来确定碳源投加量(适用更广泛的场景,考虑进水、出水以及目标COD值):碳源投加量(kg/d)=COD差值(kg/d)/COD贡献率这里的COD差值是指处理池的目标COD值减去实际进水COD值得到的COD缺口;COD贡献率是指所添加碳源在生化反应过程中能转化为COD的比例。在实际应用中,选择合适的计算方法应根据具体的水质参数、工艺流程以及微生物系统的营养需求来确定。

2024-12-16

more

12...24252627282930 共291条 30页,到第 确定

全国服务热线:

181-3792-9298

联系电话:18137929298 / 17395951977

固定电话:0379-63931977

邮箱:lysjhb@126.com

网址:http://www.shuijiahuanbao.com/

公司地址:洛阳市老城区老310国道老战友物流西200米

手机了解更多

手机了解更多

微信关注我们

微信关注我们

Copyright © 洛阳水佳环保科技有限公司 All rights reserved 豫ICP备18006930号-1 豫公网安备 41030202000201号 【免责声明】